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Abstract. Imbalance problems in object detection are one of the key
issues that affect the performance greatly. Our focus in this work is to
address an imbalance problem arising from defect detection in indus-
trial inspections, including the different number of defect and non-defect
dataset, the gap of distribution among defect classes, and various sizes
of defects. To this end, we adopt the anomaly detection method that is
to identify unusual patterns to address such challenging problems. Es-
pecially generative adversarial network (GAN) and autoencoder-based
approaches have shown to be effective in this field. In this work, 1) we
propose a novel GAN-based anomaly detection model which consists of
an autoencoder as the generator and two separate discriminators for
each of normal and anomaly input; and 2) we also explore a way to effec-
tively optimize our model by proposing new loss functions: Patch loss and
Anomaly adversarial loss, and further combining them to jointly train
the model. In our experiment, we evaluate our model on conventional
benchmark datasets such as MNIST, Fashion MNIST, CIFAR 10/100
data as well as on real-world industrial dataset – smartphone case de-
fects. Finally, experimental results demonstrate the effectiveness of our
approach by showing the results of outperforming the current State-Of-
The-Art approaches in terms of the average area under the ROC curve
(AUROC).

Keywords: Imbalance problems, Anomaly Detection, GAN, Defects In-
spection, Patch Loss, Anomaly Adversarial Loss

1 Introduction

The importance of the imbalance problems in machine learning is investigated
widely and many researches have been trying to solve them [12],[20],[23],[28],[34].
For example, class imbalance in the dataset can dramatically skew the perfor-
mance of classifiers, introducing a prediction bias for the majority class [23].
Not only class imbalance, but various imbalance problems exist in data sci-
ence. A general overview of imbalance problems is investigated in the literature
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[12],[20],[23],[28]. Specifically, the survey of various imbalance problems for ob-
ject detection subject is described in the review paper [34].

We handle a couple of imbalance problems closely related to industrial defects
detection in this paper. Surface defects of metal cases such as scratch, stamped,
and stain are very unlikely to happen in the production process, thereby re-
sulting in outstanding class imbalance. Besides, size of defects, loss scale, and
discriminator distributional imbalances are covered as well. In order to prevent
such imbalance problems, anomaly detection [8] approach is used. This method
discards a small portion of the sample data and converts the problem into an
anomaly detection framework. Considering the shortage and diversity of anoma-
lous data, anomaly detection is usually modeled as a one-class classification
problem, with the training dataset containing only normal data [40].

Reconstruction-based approaches [1],[41],[43] have been paid attention for
anomaly detection. The idea behind this is that autoencoders can reconstruct
normal data with small errors, while the reconstruction errors of anomalous data
are usually much larger. Autoencoder [33] is adopted by most reconstruction-
based methods which assume that normal and anomalous samples could lead to
significantly different embeddings and thus differences in the corresponding re-
construction errors can be leveraged to differentiate the two types of samples [42].
Adversarial training is introduced by adding a discriminator after autoencoders
to judge whether its original or reconstructed image [10],[41]. Schlegl et al. [43]
hypothesize that the latent vector of a GAN represents the true distribution of
the data and remap to the latent vector by optimizing a pre-trained GAN-based
on the latent vector. The limitation is the enormous computational complexity of
remapping to this latent vector space. In a follow-up study, Zenati et al. [52] train
a BiGAN model [4], which maps from image space to latent space jointly, and re-
port statistically and computationally superior results on the MNIST benchmark
dataset. Based on [43],[52], GANomaly [1] proposes a generic anomaly detection
architecture comprising an adversarial training framework that employs adver-
sarial autoencoder within an encoder-decoder-encoder pipeline, capturing the
training data distribution within both image and latent vector space. However,
the studies mentioned above have much room for improvement on performance
for benchmark datasets such as Fashion-MNIST, CIFAR-10, and CIFAR-100.

A novel GAN-based anomaly detection model by using a structurally sepa-
rated framework for normal and anomaly data is proposed to improve the biased
learning toward normal data. Also, new definitions of the patch loss and anomaly
adversarial loss are introduced to enhance the efficiency for defect detection.
First, this paper proves the validity of the proposed method for the benchmark
data, and then expands it for the real-world data, the surface defects of the
smartphone case. There are two types of data that are used in the experiments –
classification benchmark datasets including MNIST, Fashion-MNIST, CIFAR10,
CIFAR100, and a real-world dataset with the surface defects of the smartphone.
The results of the experiments showed State-Of-The-Art performances in four
benchmark dataset, and average accuracy of 99.03% in the real-world dataset of
the smartphone case defects. To improve robustness and performance, we select
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the final model by conducting the ablation study. The result of the ablation
study and the visualized images are described.

In summary, our method provides the methodological improvements over
the recent competitive researches, GANomaly[1] and ABC[51], and overcome
the State-Of-The-Art results from GeoTrans[13] and ARNet[18] with significant
gap.

2 Related Works

Imbalance problems
A general review of Imbalance problems in deep learning is provided in [5].
There are lots of class imbalance examples in various areas such as computer vi-
sion [3],[19],[25],[48], medical diagnosis [16],[30] and others [6],[17],[36],[38] where
this issue is highly significant and the frequency of one class can be much larger
than another class. It has been well known that class imbalance can have a sig-
nificant deleterious effect on deep learning [5]. The most straightforward and
common approach is the use of sampling methods. Those methods operate on
the data itself to increase its balance. Widely used and proven to be robust is
oversampling [29]. The issue of class imbalance can be also tackled on the level
of the classifier. In such a case, the learning algorithms are modified by intro-
ducing different weights to misclassification of examples from different classes
[54] or explicitly adjusting prior class probabilities [26]. A systematic review on
imbalance problems in object detection is presented in [34]. In here, total of eight
different imbalance problems are identified and grouped four main types: class
imbalance, scale imbalance, spatial imbalance, and objective imbalance. Prob-
lem based categorization of the methods used for imbalance problems is well
organized also.

Anomaly detection
For anomaly detection on images and videos, a large variety of methods have
been developed in recent years [7],[9],[22],[32],[37],[49],[50],[55]. In this paper, we
focus on anomaly detection in still images. Reconstruction-based anomaly de-
tection [2],[10],[43],[44],[46] is the most popular approach. The method compress
normal samples into a lower-dimensional latent space and then reconstruct them
to approximate the original input data. It assume that anomalous samples will
be distinguished through relatively high reconstruction errors compared with
normal samples.

Autoencoder and GAN-based anomaly detection
Autoencoder is an unsupervised learning technique for neural networks that
learns efficient data encoding by training the network to ignore signal noise [46].
Generative adversarial network (GAN) proposed by Goodfellow et al. [15] is the
approach co-training a pair networks, generator and discriminator, to compete
with each other to become more accurate in their predictions. As reviewed in
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[34], adversarial training has also been adopted by recent work within anomaly
detection. More recent attention in the literature has been focused on the pro-
vision of adversarial training. Sabokrou et al. [41] employs adversarial training
to optimize the autoencoder and leveraged its discriminator to further enlarge
the reconstruction error gap between normal and anomalous data. Furthermore,
Akcay et al. [1] adds an extra encoder after autoencoders and leverages an extra
MSE loss between the two different embeddings. Similarly, Wang et al. [45] em-
ploys adversarial training under a variational autoencoder framework with the
assumption that normal and anomalous data follow different Gaussian distri-
bution. Gong et al. [14] augments the autoencoder with a memory module and
developed an improved autoencoder called memory-augmented autoencoder to
strengthen reconstructed errors on anomalies. Perera et al. [35] applies two ad-
versarial discriminators and a classifier on a denoising autoencoder. By adding
constraint and forcing each randomly drawn latent code to reconstruct examples
like the normal data, it obtained high reconstruction errors for the anomalous
data.

3 Method

3.1 Model Structures

In order to implement anomaly detection, we propose a GAN-based generative
model. The pipeline of the proposed architecture of training phase is shown in
the Figure 1. The network structure of the Generator follows that of an autoen-
coder, and the Discriminator consists of two identical structures to separately
process the input data when it is normal or anomaly. In the training phase, the
model learns to minimize reconstruction error when normal data is entered to
the generator, and to maximize reconstruction error when anomaly data is en-
tered. The loss used to minimize reconstruction error with normal image input
is marked in blue color in four ways. Also, the loss used for maximizing the error
with anomaly image input is marked in red color in two ways. In the inference
phase, reconstruction error is used to detect anomalies as a criteria standard.The
matrix maps in the right part of Figure 1 show that each value of the output
matrix represents the probability of whether the corresponding image patch is
real or fake. The way is used in PatchGAN [11] and it is totally different from
Patch Loss we proposed in this paper.

3.2 Imbalance Problems in Reconstruction-based Anomaly
Detection

In order to handle anomaly detection for defects inspection, the required imbal-
ance characteristics are described. We define imbalance problems for defects as
class imbalance, loss function scale imbalance, distributional bias on the learn-
ing model, and imbalance in image and object (anomaly area) sizes. Table 1
summarizes the types of imbalance problems and solutions.
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Fig. 1: Pipeline of the proposed approach for anomaly detection.

Table 1: Imbalance problems and solutions of the proposed method

Imbalance Problems Solutions

class imbalance data sampling with k-means clustering (section 3.5)

loss scale imbalance loss function weight search (section 3.4)

discriminator distributional Bias two discriminator (section 3.3)

Size imbalance between object(defect) and image reconstruction-based methods

Class imbalance
Class imbalance is well known, and surface defects of metal cases such as scratch,
stamped, and stain are very unlikely to happen in the production process, there-
fore resulting in outstanding class imbalance problems between normal and
anomaly. Not only the number of normal and defective data is imbalanced, but
also the frequency of occurrence differ among the types of defects such as scratch,
stamped, and stain, so imbalance within each class exists in anomaly data. To
resolve such class imbalance, data is partially sampled and used in training.
Here, if the data is sampled randomly without considering its distribution, the
entire data and the sampled data might not be balanced in their distribution.
Therefore, in this paper,we use the method of dividing the entire data into sev-
eral groups by k-means clustering, and then sample the same number of data
within each group.

Loss function scale imbalance
The proposed method uses the weighted sum of 6 types of loss functions to train
the generator. The scale of the loss function used here is different, and even if
the scale is the same, the effect on the learning is different. In addition, GAN
contains a min-max problem that the generator and the discriminator learn by
competing against each other, making the learning difficult and unstable. The
loss scales of the generator and the discriminator should be sought at a similar
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rate to each other so that GAN is effectively trained. To handle such loss function
scale imbalance problems, weights used in loss combination are explored by a
grid search.

Discriminator distributional bias
The loss will be used to update the generator differently for normal and anomaly
data. When the reconstruction data is given to the discriminator, the generator
is trained to output 1 from normal data and 0 from anomaly data. Thus, when
training from both normal and anomaly data, using a single discriminator results
in training the model to classify only normal images well. Separating discrimi-
nator for normal data and for anomaly data is necessary to solve this problem.
This method only increases the parameters or computations of the model in the
training phase, but not those in inference phase. As a result, there is no overall
increase in memory usage or latency at the final inferences.

Size imbalance between object(defect) and image
Industrial defect data exhibits smaller size of defect compared to the size of
the entire image. Objects in such data occupy very small portion of the image,
making it closer to object detection rather than classification, so it is difficult to
expect fair performance with classification methods. To solve this, we propose
a method generating images to make the total reconstruction error bigger not
affected by the size of the defect and the size of the entire image which contains
the defect.

3.3 Network Architecture

The proposed model is a GAN-based network structure consisting of a generator
and a discriminator. The generator is in the form of an autoencoder to perform
image to image translation. And a modified U-Net[39] structure is adopted,
which has an effective delivery of features using a pyramid architecture. The
discriminator is a general CNN network, and two discriminators are used only
in the training phase.

The generator is a symmetric network that consists of four 4 x 4 convolutions
with stride 2 followed by four transposed convolutions. The total parameters of
generator is composed of a sum of 0.38K, 2.08K, 8.26K. 32.9K, 32.83K, 16.42K,
4.11K, and 0.77K, that is 97.75K totally. The discriminator is a general network
that consists of three 4 x 4 convolutions with stride 2 followed by two 4 x 4
convolutions with stride 1. The total parameters of discriminator is composed
of a sum of 0.38K, 2.08K, 8.26K, 32.9K, and 32.77K, that is 76.39K.

3.4 Loss Function

Total number of loss functions used in the proposed model is eight. Six losses
for training of generator, one for normal discriminator and another for anomaly
discriminator. The loss function for training of each discriminator is adopted
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from LSGAN [31] as shown in Eq. (1). It uses the a-b coding scheme for the
discriminator, where a and b are the labels for fake data and real data, respec-
tively.

min
D

VLSGAN(D) = [(D(x)− b)
2
] + [(D(G(x))− a)

2
] (1)

Six kinds of loss functions, as shown in from Eq. (2) to (8) are employed to
train the generator. Among them, four losses are for normal images. First, L1
reconstruction error of generator for normal image is provided as shown in Eq.
(2). It penalizes by measuring the L1 distance between the original x and the
generated images (x̂ = G(x)) as defined in [1]:

Lrecon = ‖x−G(x)‖1 (2)

Second, the patch loss is newly proposed in this paper as shown in Eq. (3).
Divide a normal image and a generated image separately into M patches and
select the average of the biggest n reconstruction errors among all the patches.

Lpatch = favg(n)(
∥∥xpatch(i) −G(xpatch(i))

∥∥
1
), i = 1, 2, ...,m (3)

Third, latent vector loss [1] is calculated as the difference between latent
vectors of generator for normal image and latent vectors of cascaded encoder for
reconstruction image as shown in Eq. (4)

Lenc = ‖GE(x)−GE(G(x))‖1 (4)

Eq. (5) defines the proposed adversarial loss for the generator update use in
LSGAN[31], where y denotes the value that G wants D to believe for fake data.

min
G

VLSGAN(G) = [(D(G(x))− y)
2
] (5)

Fourth, the adversarial loss used to update the generator is as shown in Eq.
(6). The loss function intends to output a real label of 1 when a reconstruction
image (fake) is into the discriminator.

min
G

VLSGAN(G) = [(D(G(x))− 1)
2
] (6)

Two remaining losses for anomaly images are as follows. One is anomaly ad-
versarial loss for updating generator and the other is ABC [51] loss. Unlike a
general adversarial loss of Eq (6), anomaly reconstruction image should be gener-
ated differently from real one to classify anomaly easily, the anomaly adversarial
loss newly adopted in our work is as shown in Eq. (7).

min
G

VLSGAN(G) = [(D(G(x))− 0)
2
] (7)

ABC loss as shown Eq. (8) is used here to maximize L1 reconstruction error
Lθ(·) for anomaly data. Because the difference between the reconstruction errors
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for normal and anomaly data is large, the equation is modified by adding the
exponetial and log function to solve the scale imbalance.

LABC = −log(1− e−Lθ(xi)) (8)

Total loss function consists of weighted sum of each loss. All losses for normal
images are grouped together and same as for anomaly images. Those two group
of losses are applied to update the weights of learning process randomly. The
scale imbalances exist among the loss functions. Although the scale could be
adjusted in same range, the effect might be different, so we explore the weight
of each loss using the grid search. Because ABC loss can have the largest scale,
the weighted sum of normal data is set more than twice as large as the weighted
sum of anomaly data. In order to avoid huge and unnecessary search space, each
weight of the loss functions is limited from 0.5∼1.5 range. Then the grid search
is executed the each weight adjusting by 0.5. Total possible cases for the grid
search is 314. The final explored weights of loss function are shown in Table 2.

Table 2: Weight combination of loss functions obtained by Grid search

Normal
reconstruction

L1 loss
ABC loss

Normal
adversarial

loss

Normal
reconstruction
patch L1 loss

Normal
latent vector

loss

Anomaly
adversarial

loss

1.5 0.5 0.5 1.5 0.5 1.0

3.5 Data Sampling

As mentioned in section 3.2, the experimental datasets include imbalance prob-
lems. For benchmark datasets such as MNIST, Fashion-MNIST, CIFAR-10, and
CIFAR-100, have a class imbalance problems presenting imbalance of data sam-
pling. The real-world dataset, surface defects of smartphone case is not only the
number of normal and defective data are imbalanced, but also the frequency
of occurrences differs among the types of defects. Also the size of image and
object (defect) is imbalanced too. To solve those imbalance problem, k-means
clustering-based data sampling is performed to make balanced distribution of
data. In learning stage for benchmark datasets, all data is used for normal case.
In case of anomaly, the same number is sampled for each class so that the total
number of data is similar to normal. At this time, k-means clustering is per-
formed on each class, and data is sampled from each cluster in a distribution
similar to the entire dataset. For anomaly case of defect dataset, data is sam-
pled using the same method as the benchmark, and a number of normal data is
sampled, equal to the number of data combined with the three kinds of defects
- scratch, stamped and stain. Detail number of data is described in section 4.1
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4 Experiments

In this section, we perform substantial experiments to validate the proposed
method for anomaly detection. We first evaluate our method on commonly
used benchmark datasets - MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-
100. Next, we conduct experiments on real-world anomaly detection dataset -
smartphone case defect dataset. Then we present the respective effects of differ-
ent designs of loss functions through ablation study.

4.1 Datasets

Datasets used in the experiments include of four standard image datasets: MNIST
[27], Fashion-MNIST[47], CIFAR-10[24], and CIFAR-100[24]. Additionaly smart-
phone case defect data is added to evaluate the performance in real-world envi-
ronments.

For MNIST, Fashion-MNIST, CIFAR-10 data set, each class is defined as
normal and the rest of nine classes are defined as anomaly. Total 10 experiments
are performed by defining each 10 class once as normal. With CIFAR-100 dataset,
one class is defined as normal and the remaining 19 classes are defined as anomaly
among 20 superclasses. Each superclass is defined as normal one by one, so in
total 20 experiments were conducted. Also, in order to resolve imbalance in the
number of normal data and anomaly data, and in distribution of sampled data,
the method proposed in 3.5 is applied when sampling training data. 6000 normal
and anomaly data images were used for training MNIST and Fashion-MNIST,
and 5000 were used for CIFAR-10. Additionally, for MNIST and Fashion-MNIST,
the images were resized into 32x32 so that the size of the feature can be the same
when concatenating them in the network structure.

Smartphone case defect dataset consists of normal, scratch, stamped and
stain classes. And there are two main types of data set. The first dataset contains
patch images that are cropped into 100x100 from their original size of 2192x1000
. The defective class is sampled in the same number as the class with the least
number of data among defects by deploying the method from section 3.5, and
the normal data is sampled in a similar number to that of the detective data. 900
images of normal data and 906 images of anomaly data were used for training,
and 600 images of normal data and 150 images of anomaly data were used for
testing. In the experiments, images were resized from 100x100 to 128x128. The
second dataset consists of patch images cropped into 548x500. The same method
of sampling as the 100x100 patch images is used. 1800 images of normal data and
1814 images of anomaly data are used for training, and 2045 images of normal
data and 453 images of normal data are used for testing.

4.2 Experimental Setups

Experimentation is performed using Intel Core i7-9700K @ 3.60GHz and NVIDIA
geforce GTX 1080ti with Tensorflow 1.14 deep learning framework. For augmen-
tation on MNIST, the method of randomly cropping 0∼2 pixels from the bound-
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ary and resizing again was used, while for Fashion-MNIST, images were verti-
cally and horizontally flipped, randomly cropped 0∼2 pixels from their bound-
ary, and resized again. Then, the images were rotated 90, 180, or 270 degrees.
For CIFAR-10 and CIFAR-100, on top of the augmentation method utilized
for Fashion-MNIST, hue, saturation, brightness, and contrast are varied as ad-
ditional augmentation. For defective dataset, vertical flipping and horizontal
flipping are used along with rotation of 90, 180, or 270 degrees.

Hyperparameters and details on augmentation are as follows Table 3.

Table 3: Hyperparameters used for model training

Hyperparameters
Parameters of patch reconstruction

error loss (Eq. 3)

Epoch Batch size
Learning
rate init

Learning
rate decay

epoch

Learning
rate decay

factor
Patch size Stride

Number of
selected
patch

300 1 0.0001 50 0.5 16 8 3

4.3 Benchmarks Results

In order to evaluate the performance of our proposed method, we conducted
experiments on MNIST, Fashion-MNIST, CIFAR-10 and CIFAR-100. For esti-
mating recognition rates of the trained model, AUROC(Area Under the Receiver
Operating Characteristic) is used. Table 5 contains State-Of-The-Art studies and
their recognition rates, and Figure 2 compares recognition rates, model param-
eters, and FPS on CIFAR-10 among the representative studies.

According to Table 5, for the MNIST, the paper with highest performance
among previous studies is ARNet, which presented average AUROC value of
98.3 for 10 classes, however our method obtains average AUROC of 99.7 with
the proposed method. Also, ARNet have standard deviation of 1.78 while ours
shows 0.16, therefore significantly reducing deviations among classes. For the
Fashion-MNIST, ARNet previously performs the best with average AUROC of
93.9 and standard deviation of 4.7, but our method accomplishes much better
results of average AUROC of 98.6 and standard deviation 1.20. For the CIFAR-
10, the average AUROC ARNet, so far as the best, with is 86.6 with standard
deviation 5.35, but our method achieves quite better result of average AUROC
of 90.6 with standard deviation 3.14. Lastly, for CIFAR-100, compared to the
results from ARNet, which are average AUROC of 78.8 and standard deviation
8.82, the proposed method shows outstanding improvement of average AUROC
87.4 and standard deviation 4.80. In summary, four different datasets were used
for evaluating the performance, and we achieve highly improved results from
the previous State-Of-The-Arts studies in terms of recognition rate and learning
stability on all the tested datasets.
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Figure 2 shows a graph that compares the performance of State-Of-The-
Arts researches regarding for average AUROC, FPS, and the number of model
parameters used in inference. FPS is calculated as averaging total 10 estimations
of processing time for 10,000 CIFAR-10 images. In the graph, the x-axis stands
for FPS, i.e. how many images are inferred per second, and the y-axis represents
AUROC(%), the recognition rate. The area of the circle of each method indicates
the number of model parameters used in inference. The graph shows that our
method has AUROC of 90.6%, which is 4% higher than that of ARNet, 86.6%,
known to be the highest in the field. Among the papers mentioned, GeoTrans has
the least number of model parameters, 1,216K. However, the model proposed in
this paper require 98K parameters, which only 8% of those of GeoTrans therefore
resulting in huge reduction. Finally in terms of FPS, ARNet was known to be
the fastest with 270FPS, the proposed method was able to process with 532FPS,
almost twice as fast.

Fig. 2: Comparison of AUROC, FPS, and model parameters for CIFAR10
dataset.

Table 4: AUROC results for defect dataset (%)

Dataset Train Test

100 x 100 patch defect 99.73 99.23

548 x 500 patch defect 99.74 98.84

4.4 Defect Dataset Results

Table 4 shows the experiment results with smartphone detective dataset. Testing
for 100x100 patch images, the performance is absolutely high with AUROC(%)
of 99.23. The bigger size of image data with 548x500 patch, much more difficult
than of 100x100 patch data, is tested and shows very similar results of 98.84 still.
Therefore, the superiority of our method is proved even in real-world smartphone
detective dataset.
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Table 5: Comparison with the state-of-the-art literature in AUROC(%) for
benchmark datasets

Dataset Method 0 1 2 3 4 5 6 7 8 9 avg SD

MNIST

AE 98.8 99.3 91.7 88.5 86.2 85.8 95.4 94.0 82.3 96.5 91.9 5.90
VAE[21] 92.1 99.9 81.5 81.4 87.9 81.1 94.3 88.6 78.0 92.0 87.7 7.05

AnoGAN[43] 99.0 99.8 88.8 91.3 94.4 91.2 92.5 96.4 88.3 95.8 93.7 4.00
ADGAN[10] 99.5 99.9 93.6 92.1 94.9 93.6 96.7 96.8 85.4 95.7 94.7 4.15

GANomaly[1] 97.2 99.6 85.1 90.6 94.5 94.9 97.1 93.9 79.7 95.4 92.8 6.12
OCGAN[35] 99.8 99.9 94.2 96.3 97.5 98.0 99.1 98.1 93.9 98.1 97.5 2.10
GeoTrans[13] 98.2 91.6 99.4 99.0 99.1 99.6 99.9 96.3 97.2 99.2 98.0 2.50

ARNet[18] 98.6 99.9 99.0 99.1 98.1 98.1 99.7 99.0 93.6 97.8 98.3 1.78

OURS 99.9 99.9 99.7 99.8 99.7 99.8 99.7 99.7 99.5 99.4 99.7 0.16

Fashion-
MNIST

AE 71.6 96.9 72.9 78.5 82.9 93.1 66.7 95.4 70.0 80.7 80.9 11.03
DAGMM[53] 42.1 55.1 50.4 57.0 26.9 70.5 48.3 83.5 49.9 34.0 51.8 16.47
DSEBM[55] 91.6 71.8 88.3 87.3 85.2 87.1 73.4 98.1 86.0 97.1 86.6 8.61
ADGAN[10] 89.9 81.9 87.6 91.2 86.5 89.6 74.3 97.2 89.0 97.1 88.4 6.75

GANomaly[1] 80.3 83.0 75.9 87.2 71.4 92.7 81.0 88.3 69.3 80.3 80.9 7.37
GeoTrans[13] 99.4 97.6 91.1 89.9 92.1 93.4 83.3 98.9 90.8 99.2 93.5 5.22

ARNet[18] 92.7 99.3 89.1 93.6 90.8 93.1 85.0 98.4 97.8 98.4 93.9 4.70

OURS 99.5 99.6 98.2 98.6 98.1 99.5 95.9 99.4 97.6 99.6 98.6 1.20

CIFAR-
10

AE 57.1 54.9 59.9 62.3 63.9 57.0 68.1 53.8 64.4 48.6 59.0 5.84
VAE[21] 62.0 66.4 38.2 58.6 38.6 58.6 56.5 62.2 66.3 73.7 58.1 11.50

DAGMM[53] 41.4 57.1 53.8 51.2 52.2 49.3 64.9 55.3 51.9 54.2 53.1 5.95
DSEBM[55] 56.0 48.3 61.9 50.1 73.3 60.5 68.4 53.3 73.9 63.6 60.9 9.10
AnoGAN[43] 61.0 56.5 64.8 52.8 67.0 59.2 62.5 57.6 72.3 58.2 61.2 5.68
ADGAN[10] 63.2 52.9 58.0 60.6 60.7 65.9 61.1 63.0 74.4 64.4 62.4 5.56

GANomaly[1] 93.5 60.8 59.1 58.2 72.4 62.2 88.6 56.0 76.0 68.1 69.5 13.08
OCGAN[35] 75.7 53.1 64.0 62.0 72.3 62.0 72.3 57.5 82.0 55.4 65.6 9.52
GeoTrans[13] 74.7 95.7 78.1 72.4 87.8 87.8 83.4 95.5 93.3 91.3 86.0 8.52

ARNet[18] 78.5 89.8 86.1 77.4 90.5 84.5 89.2 92.9 92.0 85.5 86.6 5.35

OURS 92.6 93.6 86.9 85.4 89.5 87.8 93.5 91.0 94.6 91.7 90.6 3.14

Dataset Method 0 1 2 3 4 5 6 7 8 9 10

CIFAR-
100

AE 66.7 55.4 41.4 49.2 44.9 40.6 50.2 48.1 66.1 63.0 52.7
DAGMM[53] 43.4 49.5 66.1 52.6 56.9 52.4 55.0 52.8 53.2 42.5 52.7
DSEBM[55] 64.0 47.9 53.7 48.4 59.7 46.6 51.7 54.8 66.7 71.2 78.3
ADGAN[10] 63.1 54.9 41.3 50.0 40.6 42.8 51.1 55.4 59.2 62.7 79.8

GANomaly[1] 57.9 51.9 36.0 46.5 46.6 42.9 53.7 59.4 63.7 68.0 75.6
GeoTrans[13] 74.7 68.5 74.0 81.0 78.4 59.1 81.8 65.0 85.5 90.6 87.6

ARNet[18] 77.5 70.0 62.4 76.2 77.7 64.0 86.9 65.6 82.7 90.2 85.9

OURS 85.5 86.1 94.4 87.3 91.7 85.1 89.9 88.3 83.8 92.4 94.2

Method 11 12 13 14 15 16 17 18 19 avg SD

AE 62.1 59.6 49.8 48.1 56.4 57.6 47.2 47.1 41.5 52.4 8.11
DAGMM[53] 46.4 42.7 45.4 57.2 48.8 54.4 36.4 52.4 50.3 50.5 6.55
DSEBM[55] 62.7 66.8 52.6 44.0 56.8 63.1 73.0 57.7 55.5 58.8 9.36
ADGAN[10] 53.7 58.9 57.4 39.4 55.6 63.3 66.7 44.3 53.0 54.7 10.08

GANomaly[1] 57.6 58.7 59.9 43.9 59.9 64.4 71.8 54.9 56.8 56.5 9.94
GeoTrans[13] 83.9 83.2 58.0 92.1 68.3 73.5 93.8 90.7 85.0 78.7 10.76

ARNet[18] 83.5 84.6 67.6 84.2 74.1 80.3 91.0 85.3 85.4 78.8 8.82

OURS 86.0 83.7 76.8 89.5 80.6 80.2 94.9 89.7 87.1 87.4 4.93
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4.5 Ablation Studies

To understand how each loss affect GAN-based anomaly learning, we defined
CIFAR-10 bird class as normal and the rest of the classes as anomaly, and
conducted an ablation study. The network structure and learning parameters
are the same as the experiments with the benchmarks, and training data is
also sampled based on k-means clustering to 5000 normal and 5000 anomaly
images. All of the given testing data from the dataset is used for testing. The
results shows that the performance improves as each loss gets added to the basic
autoencoder. In the Table 6, No.2(only ABC added) and No.7(all losses added)
don’t show much difference in AUROC, 85.44% and 86.76%. However, from
Figure 3 it can be found that reconstructed images exhibits significant difference.
It visualizes the result of experiment No.2 and No.7 with normal data. In the
case of ABC, the normal images could not be reconstructed similarly, so the
center was made 0 due to loss from anomaly. On the other hand, experiment
No.7 which exploited combination of the proposed losses reconstructed the image
similarly to the original. The average error regarding reconstruction error map
also shows difference of 2∼3 times.

Table 6: Ablation study experiment results to confirm the impact of losses used
in generator update (AUROC(%))

No.
Auto

Encoder
ABC

Generator
Normal

Generator
Anomaly

Normal
patch

Normal
latent

AUROC

1 X 64.68
2 X X 85.44
3 X X 65.74
4 X X 65.93
5 X X 64.87
6 X X 64.89
7 X X X X X X 86.76

Fig. 3: Visualized results for No.2 and No.7 experiments in ablation study
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Fig. 4: Visualization of experimental results on the Benchmark dataset & defect
data (Original, reconstruction, reconstruction error map order from the left of
each image)

5 Conclusion

We proposed a novel GAN-based anomaly detection model by using a new frame-
work, newly defined loss functions, and optimizing their combinations. The dis-
criminators for normal and anomaly are structurally separated to improve the
learning that has been biased toward normal data. Also, a new definition of patch
loss and anomaly adversarial loss, which are effective for fault detection was in-
troduced and combined with the major losses proposed from previous studies to
perform joint learning. In order to systemize the proportion of each loss in the
combination, the weight of each loss was explored using the grid search. The main
results of our experiments successfully demonstrated that the proposed method
much further improves the AUROC for CIFAR-10 data compared to the results
of State-Of-The-Art including GANomaly[1], GeoTrans[13] and ARNet[18]. Es-
pecially, we applied our method to real-world data set with surface defects of
smartphone case and validated outstanding superiority of anomaly detection of
the defects. In the future, we will try to extend our approach to a hierarchical
anomaly detection scheme from pixel level to video level.
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